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Classification of regimes of wave transport in quasi-one-dimensional

non-conservative random media
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Passive quasi-one-dimensional random media are known to exhibit one of the three regimes of transport –
ballistic, diffusive or localized – depending on the system size. In contrast, in non-conservative systems, the
physical parameter space also includes the gain/absorption length scale. Here, by studying the relationships
between the transport mean free path, the localization length, and the gain/absorption length, we enumerate
15 regimes of wave propagation through quasi-one-dimensional random media with gain or absorption. The
results are presented graphically in the form of a phase diagram. Of particular experimental importance in an
absorbing random medium, we identify three different regimes that bear the signatures of the localized regime of
the passive counterpart. We also review the literature and, when possible, assign experimental systems to a
particular regime on the diagram.
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1. Introduction

Discovery of Anderson localization (AL) [1] served as a

catalyst for interest in wave propagation through

random media for over 50 years [2]. AL is a wave

phenomenon [3] that results in cessation of diffusion [4].

First conceived in electronic systems, it originates from

repeated self-interference of de Broglie waves during

their propagation in a random potential. Conservation

of the number of carriers, enforced because the electrons

possess a charge, lies in the foundation of the concept

of AL [5].

Understanding the effect of absorption [6], ubiqui-

tous in optical systems, turned out to be essential for

proper physical description and interpretation of

experimental studies of localization of light [7–12]

and other classical waves such as ultrasound [13,14].

It also prompted [10] the search for alternative criteria

of localization in absorbing media. Furthermore, the

effect opposite to the absorption, coherent amplifica-

tion, leads to an altogether new wave phenomenon

of random lasing with a host of potential applications

[15,16]. The multitude of the observed phenomena

in realistic disordered optical systems, which are

inevitably absorbing or can even be made amplifying,

suggests that AL phenomenon is intrinsically more

complex in non-conservative random media. It moti-

vates refinement of the very concept of AL and its

criteria in such systems [17].

In this work, with the goal of establishing a

criterion of Anderson localization in non-conservative

quasi-one-dimensional (quasi-1D) random media, such

as disordered waveguides, we map out the two-

dimensional parameter space of the problem that

consists of the system size and gain or absorption

length. In quasi-1D geometry the transition to AL

lacks sharp features (mobility edges) observed in even

more complex three-dimensional systems. Thus,

Section 2 is devoted to a discussion of Anderson

localization in quasi-1D random media. In Section 3

we review and formally define the parameters that

characterize quasi-1D non-conservative systems.

In Section 4, by studying the relationships between

these parameters, we identify 15 different regimes of

wave transport in the parameter space. Furthermore,

we review the available publications on the subject and,

when published data are sufficient, assign them to a

particular region on our phase-diagram. We conclude

with a discussion of the results obtained in Section 5.

2. Localization in quasi-1D non-conservative

random media

2.1. Localization in finite passive random media

Anderson localization can be defined in a strict

mathematical sense in random media with infinite

dimensions [18]. In experimentally relevant situations,
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one usually deals with finite systems that are charac-

terized by non-zero wave flux at the boundaries. Thus,

a study of localization in finite systems is an analysis of

transport through random media.

The dimensionless conductance averaged over an

ensemble of macroscopically equivalent, but micro-

scopically different disorder realizations, g, can be used

as a criterion that defines the onset of localization [19].

According to scaling theory of localization [20],

g uniquely determines evolution of its entire distribu-

tion with an increase of the system size, formally

described by the scaling function [21]. Thus, the scaling

theory provides an important link between finite and

the infinite systems.

2.2. Localization in finite random media with gain or

absorption

Transmittance is the electromagnetic counterpart of

conductance [22]. This analogy with mesoscopic elec-

tronic transport makes it tempting to adopt the

localization criteria (LC) based on g in optical systems.

However, the LC developed for passive systems are not

necessarily applicable for non-conservative random

media, where the extrapolation to infinite size becomes

problematic [23]. The scaling function is no longer a

single parameter function [24]. Indeed, in absorbing

systems g � 1 may not be indicative of the presence of

localization [10,25], and g � 1 in an amplifying

random medium may not necessarily preclude occur-

rence of certain effects characteristic of localized

systems [26,27]. Therefore, studies of localization in

non-conservative systems concentrated on detecting

the signatures of AL such as enhanced fluctuations

[10,27–32], rounding of the coherent back-scattering

cone [33–35], anomalous diffusion [7,8,12,13,36,37]

and others.

In the case of absorption, a quantitative criterion,

based on the magnitude of fluctuation of transmission

normalized by its average, was put forward [10].

Although it described the experiment well, the assumed

critical value of fluctuations is somewhat subjective.

In view of the fact that single parameter scaling is no

longer applicable in presence of absorption [24],

it remains an open question whether the same criterion

would be suitable for systems with different values of

absorption.

In random media with gain, the situation is further

complicated because, within the statistical ensemble,

there always exists a non-zero probability of encoun-

tering a special realization of disorder where the given

value of the gain parameter exceeds the threshold for

random lasing. Without saturation effects, such a

realization will have an infinite contribution to the

statistical average. Inclusion of saturation introduces

dependence on system- and material-specific parame-

ters that are not associated with wave-transport

properties of the random medium. To regularize the

statistical ensemble, conditional statistical averaging

was introduced by excluding the diverging contribu-

tions [38]. Such an approach turned out to be fruitful in

studies of enhanced fluctuations and correlation in

mesoscopic transport of the electromagnetic waves

through random media with optical amplification

[26,27,38]. It was found that the correlation linewidth

�! [39] obtained in such an ensemble can be used to

define the Thouless parameter � ¼ �!=D! in random

media with gain. Here D! is the average mode spacing,

which is equal to the reciprocal of the density of states

in the system. Reduction of � correlates well [38] with

the enhancement of mesoscopic fluctuations – another

signature of AL. These investigations motivated us to

explore an intriguing possibility of localization by gain

– enhancement of the mesoscopic phenomena with an

increase of the amplification strength. Because the

dimensionless conductance and Thouless parameter

exhibit opposite trends with an increase of gain,

the relationship g ¼ � is no longer valid in non-

conservative media. This observation exemplifies

added complexity in description of wave propagation

in open random media with gain (or absorption), even

when such effects as gain saturation or spontaneous

emission noise (see, for example [40,41]) are not

accounted for.

2.3. Disordered waveguide (wire) geometry

Because of quantization of the transverse component

of momentum, the transport properties in quasi-1D

(waveguide) geometry can be conveniently described in

terms of a transfer matrix [42]. Assuming that this

transfer matrix has random entries with only flux and

symmetry conservation turned out to be a fruitful

approach [43], which yielded some exact analytical

results [44,45].

In passive quasi-1D systems, the transition from

ballistic to diffusive and then to localized regimes

occurs as a function of the system size L only (and not

the strength of disorder as in three-dimensions [3D]),

even if the system is weakly scattering k‘ � 1. The

diffusion regime is only a transitive regime which,

unlike in 3D systems, does not persist in the limit

L ! 1. Therefore, quasi-1D systems [10,25,27,30,32,

46–54] do not exhibit critical behavior at the size-

driven transition from diffusive to localized transport.

However, because we set out to consider the non-

conservative systems for which L ! 1 may not be

easily defined, quasi-1D geometry is sufficiently

Journal of Modern Optics 1917

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
a
m
i
l
o
v
,
 
A
l
e
x
e
y
]
 
A
t
:
 
0
5
:
3
0
 
2
2
 
N
o
v
e
m
b
e
r
 
2
0
1
0



complex to capture both diffusive and localized

behavior in systems of finite size. As shown below,

quasi-1D non-conservative random media is expected

to exhibit very complex parameter space, c.f. Figure 1.

Furthermore, due to the availability of the ever more

powerful computational resources, it has recently

become possible to perform systematic numerical

investigations of the entire parameter space of the

quasi-1D non-conservative random media.

Although an interplay between the effects of

amplification and localization has been the subject

of continuous research effort (see, for example [26–31,

33,55–65]), a systematic study that would rationalize

different theoretical and experimental observations

has not yet been attempted. Below, we present such

a systematic analysis of the parameter space for quasi-

1D non-conservative random media.

3. Definitions of parameters in quasi-1D

non-conservative random media

In passive volume-disordered waveguides, the transi-

tion from ballistic to diffusive and then to the localized

regime occurs when the length of the system is

increased above ‘ and � ¼ N� ‘, respectively.

Here ‘ is the transport mean free path, N is the

number of waveguide channels, and � is the localiza-

tion length [42]. In waveguides filled with a non-

conservative random medium, the parameter space

becomes two-dimensional: beside the system size L, it

also includes the gain or absorption length scale ‘g,a.

Figure 1 shows this two-parameter phase space.

The boundaries between different regions in

Figure 1 are based on relationships between a subset

of parameters that can be expressed in terms of length

or time scales. The length parameters include L, ‘, �,

and (ballistic) absorption/gain lengths ‘a=‘g. The

boundaries in the other set are more physically

transparent when expressed in the spectral domain in

terms of the following parameters: the average mode

spacing D! / ðNLÞÿ1; the passive average mode line-

width �! (/ DLÿ2 in diffusive regime ‘5L5 �); and

gain or absorption rate g,a ¼ �c=‘g,a � ��ÿ1
g,a (nega-

tive in the case of gain). Here, c is speed of light and D

is the diffusion constant. Based on these parameters

the following relationships can be established:

. L � ‘ signifies the transition from ballistic to

multiple-scattering regime. No other signifi-

cant changes are expected in the region of

moderate absorption/gain ‘5 ‘g,a shown in

the middle panel in Figure 1.

. Generalized Thouless parameter �!ðÞ=D! ’

ð�!þ Þ=D! describes [38] the transition

from spectrally overlapping quasi-modes

to the resonance-dominated behavior.

Here, �! � �!ð ¼ 0Þ. In the case of passive

system ¼ 0, the ratio reduces to � ¼ g.

. jj ¼ �! curves signify the transition to the

regime when the gain or absorption overcomes
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Figure 1. Classification of regimes of wave transport in
quasi-1D non-conservative random media. X and Y axes
correspond to the system length L and absorption/gain
length ‘a,g, see text for labeling convention. Due to large
disparity in the characteristic length scales, the plot is
separated into three panels, which correspond to strong
absorption 1=‘a � 1=‘ (a), weak absorption and gain
1=‘a,g � ‘=�2 (b), and strong gain 1=‘g � 1=‘ (c) regimes.
(The color version of this figure is included in the online
version of the journal.)
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the radiative leakage of an average quasi-

mode in the system.

. Long self-crossing Feynman paths give rise to

weak localization correction. In quasi-1D, the

probability of such paths becomes equal to

unity at L ¼ �, their length is given by

L2=‘ ¼ �2=‘. Therefore, we estimate that the

weak localization corrections become suscep-

tible to gain or absorption when ‘g,a becomes

comparable to this length scale.

. Condition ‘ ¼ ‘g,a marks the onset of the

regimes of very strong absorption/gain shown

in the upper/lower panel in Figure 1. Here, the

ballistic regimes become limited by the condi-

tion ‘g,a ¼ L.

The distinctions between different regions are only

valid in the statistical sense because the sample-to-

sample fluctuations are inherent in a random medium.

When gain is present, the statistical ensemble is

assumed to be conditional [38], which excludes the

non-physical solutions [66]. Furthermore, the consid-

ered (open) system is of a finite size and, therefore, the

transitions between different ‘phases’ are expected to

be smooth. Hence, our diagrams should only be used

as a guide to identify qualitatively different regimes of

wave transport.

4. ‘Phases’ of wave transport through

non-conservative random media

The regions in Figure 1 are labeled with two letters and

a subscript. The first letter, A/G, stand for absorption/

gain and is common for all regions above/below the

horizontal axis. The second letter in the labels, B, D or

L, is attributed to the regimes where some signatures of

the ballistic, diffusive, and localized transport are

expected to occur. Based on the list of separatrices

listed above, one can identify the following regions:

. GB1,AB1: random systems with parameters in

these regions are expected to behave similar to

their passive counterparts. Note that in the

regime of very strong gain or absorption,

‘ÿ1
g,a 4 ‘ÿ1, the ballistic region becomes

bounded by L5 ‘g,a.

. GD1,AD1: with the exception of anomalously

localized states [5,45,56, 67–69], the gain or

absorption is not expected to be sufficient to

appreciably modify the diffusive behavior in

these regions.

. GD2: such systems were successfully treated

with the ‘negative absorption’ diffusive

approach often invoked in discussion of

random lasers [70–78]. Systems in this regime

also are expected to exhibit the enhanced

mesoscopic fluctuations and non-local corre-

lations [26,27,38].

. GL1: random media with such strong gain,

�!ðÞ=D!5 1, are expected to exhibit reso-

nant features in spectrum with strong sample-

to-sample fluctuations [55,79]. Retaining the

contribution from only the physical solutions

becomes essential [66,80] for the systems with

the parameters in this region.

. GL2: the condition g ¼ ÿ�!ð ¼ 0Þ signifies

lasing of an average mode and, in diffusive

systems, is equivalent to the onset random

lasing as predicted by Letokhov [70].

. AL1,AL2,AL3: these regimes represent the

systems that would formally be localized if the

absorption could be removed. Of these, AL1 is

the most favorable case because the systems

in this regime have a spectrum of separated

resonances, �!ðÞ=D! ’ ð�!ð ¼ 0Þ þ Þ=

D!5 1, with the radiative leakage being the

dominant relaxation mechanism (possibly,

experimental systems of [10] belong to this

parameter ‘phase’). The latter is no longer true

for the AL2 regime. AL3 describes an intrigu-

ing type of a random medium with a contin-

uous spectrum due to strong absorption,

which has washed out the individual reso-

nances, but still exhibits the weak localization

corrections.

. AD2,AD3: systems in these regimes of moder-

ate and strong absorption are expected to

exhibit suppressed localization effects [25].

For strong absorption, even the diffusion

propagation is suppressed on long scales.

The majority of experimental systems are

expected to fall in one of these two regions.

. AB2: this regime is marked by the dominant

effect of absorption when ‘a is the shortest of

all length-scales. Because it also implies

‘ÿ1
a 4 ‘ÿ1, diffusion-like propagation does

not set in.

. GL3,GL4: in these regimes, similar to GL2,

it is more meaningful to ascribe L notation

to lasing. In contrast to the very strong

absorption counterpart AB2, we separated

the ‘ÿ1
g 4 ‘ÿ1 region into ‘g 5 ‘5L (GL3)

and ‘g 5L5 ‘ (GL4). In the latter regime,

one can justify neglecting scattering. Thus,

GL4 encompasses lasing phenomena in Fabry-

Perot geometry. In contrast, in GL3 the

scattering can provide the dominant feedback

as it has been very recently demonstrated

experimentally [81,82].
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5. Discussion and outlook

As discussed in the previous section, the parameter

space in volume-disordered waveguides becomes two-

dimensional when the medium is no longer assumed

passive. Importantly, the coherent amplification/

absorption non-trivially affects the interferences of

multiply-scattered waves and, thus, can promote/sup-

press localization phenomena. This observation has

motivated us to begin to systematically explore an

intriguing possibility of localization by gain enhance-

ment of the mesoscopic phenomena with an increase of

the amplification strength [17,26,27,38,55,79,83].

Furthermore, in the experimental studies of localiza-

tion of light, the importance of the proper account of

absorption has been widely appreciated [8–10, 36,84].

In finite passive random media, the prevalence of

the localization effects can be assessed with a number

of criteria: averaged dimensional conductance, its

mesoscopic fluctuations relative to the mean value,

Thouless parameter, renormalization of the diffusion

coefficient, inverse participation ratio, spatial correla-

tions and others. Single parameter scaling theory of

localization may be used to establish the relationships

between different criteria. These relationships will

not necessarily hold in the non-conservative media.

We believe that our analysis of the parameter space in

Section 4 will be instrumental in generalizing the

concept of AL and establishing a robust criterion

for its observation in non-conservative random

media [17,83].
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