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We employ ab initio simulations of wave transport in disordered waveguides to
demonstrate explicitly that although accounting for evanescent channels mani-
fests itself in the renormalization of the transport mean free path, the position-
dependent diffusion coefficient, as well as distributions of angular transmission,
total transmission and conductance, all remain universal.

1. Introduction

Wave interference leads to deviations from the diffusive description of wave propagation
through a random medium. This is a manifestation of an onset of Anderson localization –
a paradigm in mesoscopic physics [1–3].

Self-consistent theory (SCT) of localization [4,5] accounts for the wave interference
effects by renormalizing (reducing) the diffusion coefficient. In an experiment, one deals
with samples of finite size. In such an open system, the SCT predicts [6–9] that the diffusion
coefficient becomes position dependent. This is because the wave can escape through a
boundary and hence reduce interference corrections.

Localization in finite media can be studied in quasi-one-dimension (quasi-1D) where
the transition from diffusion to localization occurs with an increase in the system length
[10]. A wire for an electronic system or a random waveguide as an optical counterpart are
examples of quasi-1D systems. Position dependence of the diffusion coefficient has been
demonstrated [11,12] in ab-initio numerical simulations of wave transport in a disordered
waveguide.

Details of the microscopical disorder become evident in the near-field [13,14] and play
an important role in the transport of the electromagnetic waves in random media [15]. The
evanescent fields are an inseparable part of the quasi-modes of the open random media
considered in transport geometry. In optical systems considered here, quasi-modes [16] are
used to explain the effect of coherent random lasing [17–20]. Fluctuations of the local density
of states [21–23] and the related spatial intensity correlations [24,25] carry information about
near-fields; thus they are sensitive to the microscopical details of the disorder and are not
universal. The position-dependent diffusion coefficient is defined as the ratio between local
statistically averaged flux and the gradient of energy density. Because both of the latter two
parameters should be smooth on the scales less than transport mean free path, the position
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44 B. Payne et al.

dependent diffusion is expected to be universal. In this work, we directly test this assumption
in ab initio numerical simulations.

The quasi-1D geometry of a waveguide is useful for studying wave transport because
quantization of the transverse component of momentum provides a convenient enumerable
basis of channels leading to the transfer matrix description [26]. The component of the
wave vector perpendicular to the direction of propagation is k⊥μ = (μπ)/w, where w is
the width of the waveguide, and μ is the channel index. The component of �k parallel to the

direction of propagation, k‖μ =
√

(ω/c)2 − (μπ/w)2, becomes imaginary for sufficiently
large channel index μ > Np. Here ω is frequency, c is speed of light, and the width w is
chosen such that the system is not close to a special case of k‖Np = 0.[27,28] Np propagating
channels with real-valued k‖μ are “open” when the waveguide is empty, and the evanescent
channels for which k‖μ is imaginary are often referred to as “closed” because they do not
carry a flux in an empty waveguide. This is the reason why these channels do not appear in
the overall transmission matrix of the system.

Properly accounting for evanescent channels and coupling between scatterers induced
by them [29] is a notoriously difficult problem. Commonly, evanescent channels are not
considered explicitly, instead, a phenomenological parameter, transport mean free path,
is introduced. This treatment is sufficient to describe the macroscopic wave transport as
exemplified by the success of Dorokhov and Mello, Pereyra, and Kumar theory [29,30]. The
evanescent channels were not included explicitly in random matrix theories until recently
[31]. This treatment was justified by the so-called folding procedure [27,32] which allows
one for a single scatterer to collapse the full 2

(
Np + Ne

) × 2
(
Np + Ne

)
transfer matrix

to the smaller matrix 2Np × 2Np . Here, Ne is the number of evanescent channels in the
transfer matrix and the factor two reflects a possibility of forward and backward propagation
within each channel. This procedure is in line with the key concept in mesoscopic physics
– universality [2] – only one (macroscopic) parameter survives when one is concerned
with such transport properties as conductance. Some evidence for universality of position-
dependent diffusion coefficient has been presented in Refs. [11,12]. Here, we study how
evanescent channels affect the transport properties of the waveguide with volume disorder.
We demonstrate that the position-dependent diffusion, as well as angular and the total
transmission which are measurable in optical experiments, are all universal.

In Section 2, we describe a numerical model which has been used to obtain results in
Ref. [11]. It describes a disordered medium as a collection of randomly placed scattering
potentials in a planar quasi-1D metallic waveguide. The transfer matrix method is used
[33–35], and self-embedding technique [36,37] is employed to control numerical errors in
simulation. The number of propagating and evanescent channels, scattering strength, system
dimensions, and scatterer density are adjustable parameters. The outcome of the numerical
simulations is transmission and reflection matrices, and the electric fields throughout the
volume of the waveguide. By varying the scatterer configuration, we obtain a large statistical
ensemble. In Section 3, we show that including evanescent channels results in renormal-
ization of the transport mean free path. Universality of the position-dependent diffusion
coefficient, c.f. Section 4, as well as all transport parameters based on transfer matrix, is
preserved. Therefore, one can always find an equivalent system with suitable parameters
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Waves in Random and Complex Media 45

where evanescent channels do not participate in transport and, hence, can be neglected in
the simulations. This makes the computation numerically stable and allows modeling of
much larger systems, such as those exhibiting Anderson localization [11].

In the appendix, we describe an algorithm for constructing a random potential which
corresponds to a given scattering matrix.

2. Numerical model

Our goal is to perform ab initio numerical simulations without making any assumptions
about the nature or strength of multiple-wave interference. We consider a scalar, monochro-
matic wave E(r)e−iωt propagating in a 2D volume-disordered waveguide of width w and
length L � w. The wave field E(r) obeys the 2D Helmholtz equation:

[
∇2 + k2 (1 + δε(r))

]
E(r) = 0. (1)

Here, k = ω/c is the wavenumber and δε(r) is the randomly fluctuating part of the dielectric
constant. The waveguide geometry considered here offers a convenient basis for description
of wave propagation [26] because the transverse, y-axis, momentum is quantized k⊥μ =
πμ/w with an integer μ. The transverse modes of the empty waveguide are χμ(y) =
(2/w)1/2 sin(k⊥μy). We represent δε(r) as a collection of M randomly positioned “screens”,
scattering potentials f (y, ym), perpendicular to the z axis of the waveguide:

δε(r) =
M∑

m=1

αδ(z − zm) f (y, ym), (2)

where zm represent random positions of the screens and α measures their scattering strength.
A function f (y, ym), parametrized by random value ym with 0 < ym < w, is to be
determined below. The chosen form of random potential in Equation (2) allows us to express
the electric field in the waveguide between two successive scattering planes zm < z < zm+1
as

E(y, z)=
Np+Ne∑
μ=1

[
E (+)

μ (zm)eik‖μ(z−zm)

+E (−)
μ (zm)e−ik‖μ(z−zm)

]
χμ(y). (3)

E (±)
μ (zm) are the amplitudes of the forward and backward propagating components of the

μ’th mode. k‖μ =
[
k2 − k2⊥μ

]1/2
is the longitudinal component of the momentum. For the

propagating modes with 1 < μ ≤ Np, k‖μ is real-valued, whereas for the evanescent ones
Np < μ ≤ Np + Ne, k‖μ becomes purely imaginary. The number of propagating channels
Np, an integer part of kw/π , depends on the width of the waveguide. Although the number
of evanescent channels is not bound, in practice, a suitable Ne can be chosen based on the
nature of scattering. This can be seen with the following argument. Substituting Equation (3)
into Equation (1), we obtain
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46 B. Payne et al.

Figure 1. Random potential f (y, ym) with ym = w/2 is reconstructed from Equation (6) using the
procedure described in theAppendix. Dot-dash, dash, and solid lines correspond to Np+Ne = 2, 6, 10
respectively. One can observe the convergence of f (y, ym) → δ(y−ym) with an increase in Np+Ne.

E (±)
μ (zm+1)=E (±)

μ (zm)e±ik‖μ(zm+1−zm) ∓ k2

2ik‖μ
×

×
Np+Ne∑

ν=1

	(m)
μν

[
E (+)

ν (zm)eik‖ν(zm+1−zm)

+E (−)
ν (zm)e−ik‖ν(zm+1−zm)

]
. (4)

The process of scattering at the m’s site is fully described by the matrix

	(m)
μν =

w∫
0

α f (y, ym)χμ(y)χν(y)dy. (5)

Hence, by truncating the matrix as 	
(m)
μν ≡ 0 for all μ, ν > Np + Ne one avoids excitation

of these channels in the course of the scattering processes. In our model, we chose

	(m)
μν = αχμ(ym)χν(ym), μ, ν ≤ Np + Ne. (6)

By comparing this expression to Equation (5), one can see that f (y, ym) → δ(y − ym) in
the limit Ne → ∞. In the Appendix we describe the nontrivial mathematical procedure for
finding the scattering potential for a given 	

(m)
μν . Figure 1 depicts f (y, ym = w/2) for 	

(m)
μν

given by Equation (6) with Np+Ne = 2, 6, 10. Of course, to fully resolve a δ-function using
the discrete channels would require accounting for infinitely many evanescent channels. By
choosing proper scattering potentials rather than point scatterers, we are able to limit Ne

and, by varying its value, to vary the microscopical properties of disorder, c.f. Figure 1.
When the special condition k‖μ=Np = 0 is met, propagation can lead to some counter-

intuitive phenomena in both electronic [38] and electromagnetic [39] transport. We avoid
this degenerate case by setting w = (Np + 1/2)λ/2. This choice of w puts kw/π exactly
halfway between two successive integers Np and Np + 1.
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Waves in Random and Complex Media 47

As seen from Equation (4), the channel-indexed equations can be written as a system
of linear equations. Thus, wave propagation can be described by matrices of rank 2(Np +
Ne) of two types: (i) free space matrices, and (ii) scattering matrices. These matrices are
multiplied to form a total matrix which defines the transmission matrix tμν [40]. The latter
describes the flux Tμν = ∣∣tμν

∣∣2 registered at channel μ ≤ Np if unit flux is launched into

channel ν ≤ Np. Total transmission Tμ = ∑Np
ν=1 Tμν is the total flux transmitted into all

channels. Lastly, when unit flux is injected into each channel, the total transmitted flux is
described by conductance g = ∑Np

μ,ν=1 Tμν . Unlike the mesoscopic electronic transport,
measurements of the electromagnetic wave transmission through a disordered waveguide
allow measurement of all channel-resolved transmission coefficients [41].

The computation of the simple product of individual matrices is a straightforward
approach to field propagation but is not numerically stable over many multiplications
(∼ 102–105 for the results in this paper), as the eigenvalues in the product become divergent
[42]. The deterioration caused by diverging eigenvalues is corrected by renormalizing the
products. We implement a self-embedding procedure [43] to change the growth of error
inherent in numerical matrix multiplication from exponential to linear. This allows us to
limit the errors in flux conservation to less than 10−10 in all cases, which is critical as it
allows the transfer matrix method to be used in the diffusive and localized (extremely long
waveguides) regimes.

The system is excited from the left by illuminating the waveguide with Np unit fluxes
(one in each right propagating mode) and the wave field E(r) is computed for a given
realization of disorder. To compute statistical averages, ensembles of no fewer than 107

realizations are used in the results presented below.

3. Renormalization of transport mean free path

To estimate the transport mean free path � in our model, we perform a set of simulations for
different disorder strengths and waveguide lengths, exploring both the regime of classical
diffusion g0 ≡ (π/2) Np�/ (L + 2z0) � 1 and that of Anderson localization g0 � 1.
z0 = (π/4)� is the so-called extrapolation length [43]. The dependencies of 〈g〉 and var(g)

on g0 are fitted by the analytic expressions obtained by Mirlin [44] using the supersymmetry
approach with � as the only fit parameter [11]. To distinguish between system with and
without evanescent channels, we introduce an explicit dependence of the transport mean
free path on the number of evanescent channels �(Ne). We note that, strictly speaking,
the transport mean free path in our model should depend on the total number of channels
Np + Ne, c.f. Figure 1.

To verify that the renormalizing effect of evanescent channels on transport mean free
path does not affect SPS [10], the average conductance 〈g〉 and its variance are computed
in numerical simulations of quasi-1D waveguides. Once 〈g〉 is known, SPS predicts that
all other transport parameters are uniquely defined. Numerical results are compared to SPS
predictions found with the supersymmetry approach [44]. When no evanescent channels are
present in our numerical model, the simulation results obey SPS, c.f. Figure 2. No fitting
parameters are used; the factor of 15/2 is to account for the quasi-1D geometry of the
waveguide. Although variance of the conductance distribution decreases deeper into the
localization regime 〈g〉 → 0, c.f. Figure 2, its relative value var(g)/〈g〉2 actually diverges.
This is a manifestation of the lognormal distribution conductance in localized systems [30].
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48 B. Payne et al.

Figure 2. (Color online) Variance of dimensionless conductance is plotted vs. its mean value. Open
circles represent numerically computed data for systems with Np = 10, Ne = 0 and varying L . The
dashed line plots Equation (6.23) of Ref. [44], derived using the supersymmetry approach. No fitting
parameters are used.As per single parameter scaling (SPS), the variance of dimensionless conductance
is uniquely determined by its average. Open squares represent the system with L/λ = 200, Np = 10
and Ne from 0 to 8 evanescent channels in the right-to-left order. The effect of evanescent channels
is to effectively reduce 〈g〉 or, in other words, to renormalize (decrease) �(Ne) while retaining the
property of SPS.

When a finite number of evanescent channels is added, c.f. Figure 2, the average
conductance decreases. However, the relation between average conductance and its vari-
ance remains consistent with SPS since variance also decreases. As more evanescent
channels are included, the ratio monotonically decreases. Again, no fitting parameters are
needed.

There are two important observations from Figure 2. First, in our model the average
conductance decreases when more evanescent channels are present because � is renormal-
ized as there are more channels available at each scatterer for incident waves to scatter into.
Analytically, renormalization of �(Ne) is accounted for by the folding procedure [31,38].
Thus macroscopical models that use � as an input parameter, as well as numerical models
that do not include evanescent channels, give adequate description of wave transport which
is consistent with the SPS hypothesis.

Conformance of 〈g〉 and var(g) with SPS, and our conclusion about the effective
renormalization of �(Ne) above, were based on the first two moments of conductance.
To perform a more rigorous test, we find the entire distribution of conductance, as well
as the distributions of total and channel-resolved transmission, using the numerical model,
c.f. Figure 3. When evanescent channels are included for a given waveguide geometry,
the entire distribution changes. However, the system which includes evanescent channels
has the same distribution as another waveguide with with the equivalent value of g0 and
Ne = 0. Effectively, the presence of evanescent channels is equivalent to increasing system
length to L ′ so that optical depth is the same in both cases L/�(Ne) = L ′/�(0). One can see
that this condition of equivalence means that g0 = (π/2)Np�(Ne)/ [L + (π/2)�(Ne)] =
(π/2)Np�(0)/

[
L ′ + (π/2)�(0)

]
.
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Waves in Random and Complex Media 49

(a)

(b)

(c)

Figure 3. (Color online) Panel (a) shows the distribution of dimensionless conductance P(g) for three
waveguides, each with 10 propagating channels. P(g) from the numerical simulation of waveguide
with length L/λ = 200 and no evanescent channels, blue open circles, is significantly distinct from
P(g) for the same geometry and Ne = 8 evanescent channels, green squares. However, the system
with evanescent channels is equivalent to a longer system, L ′/λ = 300, with an equivalent value of
L/� - red open circles. Hence, the only effect of inclusion of evanescent channels is to renormalize
�(Ne). Panels (b,c) demonstrate that this argument also applies to P(Ta) and P(Tab), respectively.
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50 B. Payne et al.

Figure 4. (Color online) (a) Position-dependent diffusion coefficient D(z)/D0 for the three
geometries shown in each of the panels in Figure 3. The diffusion coefficient for two microscopically
different samples (Ne = 8 – green and Ne = 0 – red solid lines) coincides because they both have
identical value of L/� hence confirming the universality of D(z). The result of SCT is shown as solid
and dashed black lines for two values of L/�. Numerical simulations and SCT agree without fitting
in both cases with exception of two boundary regions.

4. Position-dependent diffusion coefficient

The wave amplitude E (±)
μ (zm) of each channel that we obtain from the numerical

algorithm allows us to calculate the energy density W(z) and the longitudinal component
of flux Jz(z) [45]:

W(zm) = k2
Np+Ne∑
μ=1

[∣∣∣E (+)
μ (zm)

∣∣∣2 +
∣∣∣E (−)

μ (zm)

∣∣∣2
]

, (7)

Jz(zm) = k

Np∑
μ=1

k‖μ
[∣∣∣E (+)

μ (zm)

∣∣∣2 −
∣∣∣E (−)

μ (zm)

∣∣∣2
]

. (8)

These two quantities formally define the diffusion coefficient D(z) which, in general, may
be position-dependent:

D(z) = −〈Jz(z)〉/ [d〈W(z)〉/dz] , (9)

where the averages 〈. . .〉 are taken over a statistical ensemble of disorder realizations.
In order to compare our numerical results for D(z) with self-consistent theory (SCT)

without fitting parameters, we need to obtain the value of the diffusion coefficient unrenor-
malized by the wave interference effects D0 = v�/2. The numerical procedure for obtaining
the transport mean free path has been described in Section 3 above. To find the diffusive
speed v, we use the definition of diffusive flux resolved with respect to the direction of
propagation [45]

〈J (±)
z (z)〉 = (v/4)〈W(z)〉 ∓ (D(z)/2)d〈W(z)〉/dz, (10)
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Waves in Random and Complex Media 51

where J (±)
z (z) represent the forward (plus) and backward (minus) propagating components

of the flux. These two quantities are found as the first and second term in Equation (8).
Combining the two components, we find

v = 2
(
〈J (+)

z (z)〉 + 〈J (−)
z (z)〉

)
/〈W(z)〉. (11)

Unlike D(z) defined by Equation (9), we numerically find that the diffusive speed in
Equation (11) does not change with z with exception of small boundary regions z � �

and z � L − �.
Figure 4 plots D(z)/D0 computed numerically for the three geometries shown in each

panel of Figure 3 using the same color scheme – as blue, green, and red lines. Two
microscopically different samples (L/λ = 200, Ne = 8 and L/λ = 300, Ne = 0) with the
identical values of L/� have the same position-dependent diffusion coefficient (green and
red lines) throughout the bulk of the system. We stress that the agreement is achieved with
no fitting parameters. The discrepancy between the two systems observed in the immediate
vicinity of the boundaries of the system. We attribute this nonuniversality to the boundary
effect which depends on the details the wave propagation near the surface, including surface
reflections[43], and hence is sensitive to the microscopical disorder.

Now we formally introduce SCT formalism for position-dependent diffusion. In quasi-
1D waveguides d(z) = D(z)/D0 is obtained following the approach of Refs. [9,11]:

∂

∂ζ
d(ζ )

∂

∂ζ
Ĉ(ζ, ζ ′) = δ(ζ − ζ ′), (12)

1

d(ζ )
= 1 + 2

g̃0
Ĉ(ζ, ζ ). (13)

Here, the function Ĉ(ζ, ζ ′) is related to the Green’s function of the original wave equation,
Equation (1); D0 = v�/2 is the Boltzmann diffusion coefficient, ζ = z/L is the dimension-
less position coordinate, and g̃0 = (π/2)Np�/L . These equations should be solved with
the following boundary conditions:

Ĉ(ζ, ζ ′) ∓ z0

L
d(ζ )

∂

∂ζ
Ĉ(ζ, ζ ′) = 0 (14)

at ζ = 0 and ζ = 1. When Equations (12–14) are solved in the diffuse regime g̃0 � 1,
the dimensionless conductance of the waveguide is found to be g0 = (π/2)N�/(L + 2z0)

[30,43] which is close to g̃0 for z0 � L .
The solid and dashed black lines in Figure 4 are found for values of L/� which are

known from numerical simulations. For both values of L/�, the SCT result agrees with
numerical simulations with no fitting parameters. The nonuniversal (disorder-dependent)
deviation from SCT is confined to the immediate vicinity to the boundaries. It is known [45]
that a diffusion description, such as SCT, is not sufficiently accurate on distances shorter
than about one transport mean free path � from the boundaries of the random medium,
where a more sophisticated description using the Milne equation [46] is required.

5. Conclusion

In this work, we obtained three main results. First, using a numerical transfer-matrix model
of quasi-1D waveguides with densely packed, randomly placed scatterers the effect of
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52 B. Payne et al.

evanescent channels on conductivity was simulated. The number of matrices multiplied
is limited by numerical accuracy, and has been extended using self-embedding technique.
This procedure is so robust to numerical errors that calculations remain accurate even when
transfer matrices include a finite number of evanescent channels. However, due to the fact
that free-space matrices including evanescent channels contain exponentially diverging
eigenvalues, the numerically intensive self-embedding steps have to be performed more
often. This slows down numerical simulations dramatically, so it is desirable to avoid the
evanescent channels altogether.

The simulations presented in this work demonstrate that evanescent channels of the
waveguide can be neglected. Indeed, although inclusion of the evanescent channels in our
model leads to (i) the additional mechanism of coupling between scatterers and (ii) change
the microscopical properties of the scatterers, the universality of wave transport is preserved.
This allows us to find an equivalent system (exhibiting the same statistical and transport
properties) without evanescent channels.

Secondly, we explicitly demonstrate that the position-dependent diffusion coefficient
introduced in the SCT of localization is a universal quantity throughout the bulk of the
random medium. The nonuniversal behavior of D(z) is confined to the immediate vicinities
of the boundaries that extend to a distance on the order one transport mean free path. We
attribute these deviations to the disorder-dependent reflections from the interface of random
medium and the surrounding free space.

The third result is obtained in the appendix. We develop a mathematical procedure to
construct the disorder potential from a given scattering matrix. In the context of the present
work, this method demonstrates the change of the microscopical disorder in our model
when a different number of evanescent channels is included in calculations. However, our
method can be applied to a general problem of constructing a disorder potential for a given
scattering matrix.
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Appendix: Reconstruction of random potential
Below we describe the procedure to invert Equation (5) and find the function f (y, ym). In particular,
we obtain the result shown in Figure 1 in the case when 	

(m)
μν is given by Equation (6). To simplify

the notations in the derivation below, we assume summations over the repeated indices from 1 to
Np + Ne.

First, we represent the unknown function as

α f (y, ym) = α
(m)
μ′ν′χμ′(y)χν′(y). (15)

Our goal is to find the coefficients α
(m)
μ′ν′ . Substituting Equation (15) into Equation (5) we obtain

	
(m)
μν = Sμν,μ′ν′α(m)

μ′ν′ , (16)

where

Sμν,μ′ν′ = 1

2
(
Np + Ne

)
Np+Ne∑
μ′ν′=1

(
δμ+ν+μ′+ν′− (17)

δ−μ+ν−μ′−ν′ − δμ−ν+μ′+ν′ − δμ+ν−μ′+ν′ − δμ+ν+μ′−ν′ +
δμ+ν−μ′−ν′ + δμ−ν+μ′−ν′ + δμ−ν−μ′+ν′

)
and δμ ≡ δμ,0 is the Kronecker delta. The tensor Sμν,μ′ν′ can be represented as a matrix of size(
Np + Ne

)2 × (
Np + Ne

)2. For
(
Np + Ne

)
> 1 this matrix is singular, det Sμν,μ′ν′ = 0, and

cannot be inverted to obtain α
(m)
μ′ν′ from 	

(m)
μν because the inverse matrix cannot be defined.
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If the matrix of a system of linear equations such as that in Equation (16) is singular, the system
does not have a unique solution. This however does not preclude the existence of a family of degenerate
solutions. To find these solutions we use the Moore–Penrose inverse, also called the pseudo-inverse,
matrix S+

μν,μ′ν′ :

α
(m)
μν = S+

μν,μ′ν′	
(m)
μ′ν′ +

(
Î − S+

μν,ρσ Sρσ,μ′ν′
)

Oμ′ν′ , (18)

where Î is the identity matrix of size
(
Np + Ne

)2 × (
Np + Ne

)2 and Oμ′ν′ is arbitrary, reflecting

the possibility of multiple solutions of Equation (16). Multiple solutions exist if and only if 	
(m)
μ′ν′

satisfies the following condition

Sμν,ρσ S+
ρσ,μ′ν′	

(m)
μ′ν′ = 	

(m)
μν . (19)

The solution which corresponds to Oμ′ν′ ≡ 0 is a special solution which has the least norm.
The number of independent parameters in Oμ′ν′ that can be used in constructing other solutions
is determined by the dimension of the null space of the matrix Sμν,μ′ν′ .

In our case, 	
(m)
μν is given by Equation (6). This expression indeed satisfies Equation (19) and,

hence, α
(m)
μν and f (y, ym) can be found. Figure (1) shows f (y, ym = w/2) for Np + Ne = 2, 6, 10

for Oμ′ν′ ≡ 0. One can see convergence to the delta function δ(y − ym) with an increase in Np + Ne
as required by Equations (5,6).
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